CHROM. 4876
THE USE OF R_{C} VALUES FOR STRUCTURAL STUDIES IN THE PAPER CHROMATOGRAPHY OF PHENOLS
L. TAIMR AND J. POSPIŠIL

Institute of Macromolecular Chemistry, Czechoslovah Academy of Sciences, Prague (Czechoslovahia)
(Received May I4th, 1970)

SUMMARY
An investigation was carried out of the chromatographic behaviour of some alkyl derivatives of phenol, pyrocatechol, hydroquinone, and 4,4 -isopropylidenebisphenol using papers impregnated with formamide or monomethylformamide. The R_{F} values of the compounds were related to a homologous series of standards; pyrocatechol and 4-alkylpyrocatechols containing $\mathrm{C}_{1}-\mathrm{C}_{12}$ alkyls were used for this purpose and were assigned to R_{C} values. The ΔR_{C} contributions of the individual groups were established, and their additivity was verified.

INTRODUCTION

The chromatographic behaviour of the alkyl derivatives of phenols has already aroused much interest. From the point of view of chromatography, the above compounds represent very simple systems, which along with their easy detectability makes them suited for investigations of the relationships between the structure and chromatographic behaviour. These investigations are in most cases based on the well-known Martin's relationship, which can be written as follows:

$$
\begin{equation*}
R_{M}=\Sigma \Delta R_{M}+K \tag{I}
\end{equation*}
$$

where $R_{M}=\log \left(I / R_{F}-I\right)$; the ΔR_{M} are the contributions of the individual parts of the molecule of the chromatographed compound, and K is a constant which in the first place includes the ratio of the cross section of the stationary to the mobile phase. Several authors ${ }^{1-6}$ have succeeded in verifying the above relationship for the alkyl derivatives of phenols. In so far as other relationships ${ }^{7}$ which have been found are concerned, the deviations were mainly due to experimental difficulties ${ }^{1}$.

Attempts have been made to reduce the experimental errors, on the one hand, by improving the techniques used, e.g., by preventing the evaporation of the phases in the course of chromatography between aluminium foils ${ }^{8}$, and on the other, by correcting the R_{F} or R_{M} values obtained in the measurements by means of one or
two standards ${ }^{0}$. However, even if the reproducibility is satisfactory, an important complication may arise, namely, that the term K in eqn. I is not constant, since both phases exhibit a concentration gradient along the paper strip ${ }^{10,11}$. For instance, Copius Peereboom ${ }^{11}$ found that the ratio of the cross-sections of both phases on a paper impregnated with paraffin oil decreased from 14.6 (start) to 2.0 (front). These complications can be avoided by using a procedure suggested by Decker ${ }^{12}$. The compound being analysed is run together with a homologous series of standards chosen in advance. Integers are assigned to the individual members of this series; Decker suggests the symbol R_{C} for these values (analogous to the Kováts' indices in GC). The R_{C} value of the compound being analyzed is determined by interpolation on an experimental curve obtained by plotting the R_{F} values of the standards against their R_{C}-values. Thus, a value of a hypothetical member of the homologous series is assigned to the compound being analysed, this member having the same position on the chromatogram as the compound. Since the R_{M} values of both the above compounds are equal, and if relationship (I) is valid, it then follows:

$$
\Sigma \Delta R_{M}+K=n \cdot \Delta R_{M}\left(\mathrm{CH}_{2}\right)+\Delta R_{M}(\text { basic compound })+K
$$

where n is the number of the carbon atoms in the chain of the hypothetical standard. Since $R_{C}=n$, the following holds

$$
R_{C}=\sum \frac{\Delta R_{M}}{\Delta R_{M}\left(\mathrm{CH}_{2}\right)}-\frac{\Delta R_{M} \text { (basic compound) }}{\Delta R_{M}\left(\mathrm{CH}_{2}\right)}
$$

By introducing ΔR_{C} for the ratio $\Delta R_{M} / \Delta R_{M}\left(\mathrm{CH}_{2}\right)$, we obtain the relationship

$$
\begin{equation*}
\left.R_{C}=\Sigma \Delta R_{C}-\Delta R_{C} \text { (basic compound }\right) \tag{2}
\end{equation*}
$$

At constant temperature, the R_{C} value is independent of the degree of impregnation, any gradient of the phases and their evaporation, as long as their chemical composition remains unchanged.

EXPERIMENTAL

The materials used were prepared according to the literature data or by repurifying commercial products.

4-Alkylpyrocatechols having C_{6} to C_{12} alkyls were prepared by acylation of pyrocatechol (I mole) with the corresponding carboxylic acid (I mole) and using boron fluoride etherate (1.2 mole) at 80° for 3 h (yield $20-30 \%$ of the theoretical); this was followed by reduction of the isolated 4 -acylpyrocatechol according to CLEMMENSEN (see ref. 13) : 4-hexylpyrocatechol (b.p. 150-160\%/r Torr), 4-heptylpyrocatechol (m.p. 65.5-66.5 ${ }^{\circ}$, ref. 13, 65-67 ${ }^{\circ}$ 4-octylpyrocatechol (m.p. 60.5-61.5${ }^{\circ}$, ref. 13, 57-58 ${ }^{\circ}$), 4-nonylpyrocatechol ($72.5-73.5^{\circ}$, ref. 13,68 ${ }^{\circ}$), 4-decylpyrocatechol ($69-70.5^{\circ}$), 4-undecylpyrocatechol (m.p. 8r-82 ${ }^{\circ}$), 4-dodecylpyrocatechol (m.p. $7^{6-77^{\circ}}$). 3-tert.-Butyl-5-ethylpyrocatechol and 3-tert.-butyl-5-propylpyrocatechol were prepared by alkylation of 4-ethylpyrocatechol or 4-propylpyrocatechol (o.or mole) with tert.butyl alcohol (o.or mole) in acetic acid, catalysed by sulphuric acid (o.or mole) at room temperature for 24 h ; after the usual treatment of the reaction mixture, the raw alkylation product was used.
J. Chromatog., 52 (1970) 131-137

Chromatograms were run on Whatman No. I paper, impregnated with 20% formamide in ethyl acetate or with 20% monomethylformamide in benzene (dried for Io min), employing the techniques without removal of the excess of the phase by filtration through the filter paper. In the formamide-chloroform system the descending technique was used; in the other cases, ascending chromatography was employed. The chromatograms were detected by spraying them with a freshly prepared mixture of a 15% solution of ferric chloride and 1% solution of potassium ferricyanide. The R_{C} values listed in Tables II and IV were obtained as the mean from at least three measurements. The maximum differences between the individual measurements of R_{C} and the mean value were ± 0.25 in the formamide systems, and ± 0.5 in the system with stationary phase of monomethylformamide.

RESULTS AND DISCUSSION

In the present work, alkyl derivatives of the following compounds were chromatographed, and their R_{C} values determined: phenol, pyrocatechol, hydroquinone, $4,4^{\prime}$-isopropylidenebisphenol (subsequently referred to as bisphenol A). The alkyl groups studied were: methyl, ethyl, isopropyl, tert.-butyl, r,r,3,3-tetramethylbutyl groups (subsequently referred to as tert.-octyl) and r,I,3,3,5,5-hexamethylhexyl (subsequently referred to as tert.-dodecyl) groups, as well as some other model compounds. Pyrocatechol and 4-alkylpyrocatechols containing C_{1} to C_{12} alkyls were chosen as the homologous series of standards; their polar character covered the whole range of polarity of the compounds studied. The first member in this series, i.c. pyrocatechol, was assigned an R_{C} value equal to zero, 4-methylpyrocatechol was assigned $R_{C}=I$ etc., cf. Table I.

Deviations from the validity of relationship (I) could be expected with the first and second member of the homologous series of standards ${ }^{\mathbf{1 , 1 2}}$. To evaluate the

TABLE I
R_{C} and R_{F} VALUES of 4-ALKYLPYROCATECHOLS
Paper impregnated with 20% formamide $\left(I_{1}\right)$ or monomethylformamide $\left(I_{2}\right)$, developed with chloroform (S_{1}) or a mixture of isopropyl ether and heptane ($1: 2$) (S_{4}).

Compound	R_{C}	R_{F} values in the chromatographic system		
		$I_{1} S_{1}$	$I_{1} S_{2}$	$I_{2} S_{2}$
Pyrocatechol	0	0.05	0.04	-
4-Methylpyrocatechol	1	0.10	0.07	-
4-Ethylpyrocatechol	2	0.18	0.13	--
4-Propylpyrocatechol	3	0.30	0.24	0.05
4-Butylpyrocatechol	4	0.45	0.40	0.08
4-Pentylpyrocatechol	5	0.60	0.55	0.13
4-Hexylpyrocatechol	6	0.71	0.68	0.21
4-Heptylpyrocatechol	7	0.78	0.78	0.31
4-Octylpyrocatechol	8	0.81	-	0.42
4-Nonylpyrocatechol	9	-	-	0.54
4-Decylpyrocatechol	10	-	-	0.64
4-Undecylpyrocatechol	11	-	-	0.71
4-Dodecylpyrocatechol	12	-	-	0.77

magnitude of these deviations the polarity of the first four mernbers of the series of 4-alkylpyrocatechols investigated was lowered by introducing the tert.-butyl group into position 6; the derivatives thus obtained were chromatographed in a system with a stationary phase of monomethylformamide. The R_{C} values (Table V) of the neighbouring members of this new homologous series differ by approximately a unit, i.e. the increments are the same as in the case of the higher members of the original series; this means that no great deviations occur.

The pyrocatechol derivatives are extremely sensitive towards detection, which allows the use of small amounts of these compounds and thus chromatographic runs of several standards from one starting line without influencing their $\boldsymbol{R}_{\boldsymbol{F}}$ values. Chromatographic runs were carried out on paper impregnated with formamide or monomethylformamide, and a mixture of diisopropyl ether-heptane ($1: 2$) was used as the mobile phase; in the case of formamide, chloroform was also used. The R_{F} values of most of the phenols investigated are very close in both the formamide systems, but differ in compounds having varying abilities of hydrogen bond formation. This is of practical importance, e.g. in the analysis of reaction mixtures formed by the alkylation of phenols, when it is possible by chromatographing in both these systems to differentiate between the derivatives formed by alkylation on the oxygen atom and polyalkyl derivatives due to alkylation in the nucleus. The system where monomethyl-

TABLE II

R_{C} VALUES OF COMPOUNDS USED IN THE CALCULATIONS OF THE ΔR_{C} increments
Paper impregnated with 20% formamide (I_{1}) or monomethylformamide (I_{2}), developed with chloroform (S_{1}) or a mixture of diisopropyl ether-heptane ($\mathrm{I}: 2$) (S_{2}).

Compound	Chromatographic system		
	$I_{1} S_{1}$	$I_{1} S_{2}$	$I_{2} S_{2}$
Phenol	3.7	3.7	4.8
2-Methylphenol	5.2	5.1	6.2
2-Ethylphenol	6.3	6.5	7.6
2-Isopropylphenol	-	-	8.7
2-tert.-Butylphenol	-	-	10.6
2-Methoxyphenol	-	-	$5 \cdot 3$
4-Isopropylphenol	-	-	7.6
4-Benzylphenol	-	6.3	6.6
4-Methoxyphenol	-		3.4
2,6-Dimethylphenol	-	6.0	$7 \cdot 7$
4-Isopropylpyrocatechol	3.0	3.0	
4-tert.-Butylpyrocatechol	3.	3	3.6
2-tert.-Butylhydroquinone	1.8	2.9	-
2-tert.-Octylhydroquinone	$4 \cdot 7$,	5.2
2-tert.-Dodecylhydroquinone	4	-	8.2
2,5-Diisopropylhydroquinone	4.1	5. T	-
2,5-Di-tert.-butylhydroquinone	6.3	$\underline{-}$	8
2,6-Di-tert.-butylhycroquinone	-	-	8.1
4,4'-Methylenebis (2,6-xylenol)	-	-	3.7
4,4'-Isopropylidene-bis(2-methylphenol)	-	4.5	3
2,6-Dimethyl-4,4'-isopropylidene-bisphenol	6.1	-	-
2,6-Diethyl-4, 4'-isopropylidene-bisphenol	-	-	$4 \cdot 7$
2,6-Diisopropyl-4,4-isopropylidene-bisphenol	- 6	-	6.6
2-tert.-Butyl-4, 4^{\prime}-isopropylidene-bisphenol	6.8	-	-
2-Methyl-6-tert.-butyl-4,4'-isopropylidene-bisphenol	-	-	6.3

J. Chromatog., 52 (1970) 131-1 37

TABLE III
ΔR_{C} INCREMENTS OF INDIVIDUAL GROUPS
Paper impregnated with 20% formamide (I_{1}) or 20% monomethylformamide (I_{2}), developed with chloroform (S_{1}) or a mixture of diisopropyl ether-heptane ($\mathrm{I}: 2$) (S_{g}).
Group Chromatographic system

	$I_{1} S_{1}$	$I_{1} S_{2}$	$I_{2} S_{2}$
ΔR_{C} (basic compound)	-8.1	-8.7	- 12.7
Phenyl	2.0	1.6	0.8
Phenolic group	-6.4	-6.6	-8.7
	3.0	3.0	2.8
p-tert.-Butyl	$\underline{-}$	-	3.6
p-Methoxy	-	-	-1.4
o-Methyl	1.5	1.4	1.4
o-Ethyl	2.6	2.8	2.8
o-Isopropyl	3.4	4.0	3.9
o-tert.-Butyl	4.5	5.8	5.8
o-tert.-Octyl	$7 \cdot 4$	-	9.1
o-tert.-Dodecyl	-	-	12.1
o-Methoxy	-	-	0.5
0,0'-Dimethyl	3.8	2.3	2.9
0,0'-Diethyl	-	-	5.0
o,o'-Diisopropyl	-	-	6.9
o, 0^{\prime}-Di-tert.-butyl	-	-	12.0
o-Methyl-o'-tert.-butyl	-	-	6.6

${ }^{\text {a }}$ Isopropylidene group was calculated as isopropyl group.
formamide is used as the stationary phase is suitable for less polar phenols. The $\boldsymbol{R}_{\boldsymbol{F}}$ values of standards are given in Table I, the R_{C} values of the compounds investigated are presented in Tables II and IV. It was found during this study that the R_{C} values of some of the compounds analysed were not completely reproducible, especially in the presence of monomethylformamide. The reproducibility observed in the preliminary experiments with dimethylformamide was even less. Such a fluctuation of values is probably due to changes in the water content of the stationary phase. This is also corroborated by a comparison between chromatograms run in winter and in summer, when there are considerable differences in the humidity of the air at the same temperature. In systems containing formamide a small fluctuation in the water content does not lead to any essential changes in the R_{C} values. The validity of relationship (2) was verified by comparing the measured and calculated values of R_{C} of the phenolic derivatives studied (Table IV), and the agreement was found to be satisfactory in most cases. The values of the increments ΔR_{C} (Table III) were calculated from the R_{C} values of compounds listed in Table II. The isopropylidene bridge in the alkylated bisphenol A's was calculated as an isopropyl group. The comparison of the bisphenols with the analogous mononuclear phenols allows the determination of the constantΔR_{C} (basic compound) in eqn. 2. The ΔR_{C} values for alkyls in the position ortho to the hydroxy group holds only if the other ortho position is free. If both the ortho positions are occupied with alkyls, the total value of both alkyls was determined. If the other ortho position is also occupied by a hydroxy group, i.e. in the case of ortho alkyl derivatives of pyrocatechol, it is not possible to employ the ΔR_{C} values from

TABLE IV
R_{C} values of phenolic compounds
Paper impregnated with 20% formamide (I_{1}) or monomethylformamide (I_{2}), de ioped with chloroform (S_{1}) or a mixture of diisopropyl ether-heptane ($1: 2$) (S_{8}).

Compound	Chromatographic system					
	$\underline{I}_{1} \underline{S}_{1}$		$\underline{I}_{1} S_{2}$		$\underline{I}_{2} S_{2}$	
	Found	Calc.	Found	Calc.	Found	Calc.
2-Methoxyphenol	6.5	-	3.8	-	$5 \cdot 3$	-
4-Methoxyphenol	3.8	-	2.4	-	3.4	-
4-Isopropylphenol	6.9	6.7	6.6	6.7	7.6	
2-Methoxy-4-tert.-butylphenol					10.3	9.8
4-tert.-Butylpyrocatechol	3.6	-	3.7	-	3.6	
4-tert.-Octylpyrocatechol	6.6	-	6.9	-	6.8	-
4-tert.-Octyl-5-methylpyrocatechol	-	-	7.0	-	6.9	-
4-tert.-Dodecylpyrocatechol	-	-		-	9.9	-
2-tert.-Butyl-5-methylhydroquinone	3.3	3.3	4.2	$4 \cdot 3$		
2-tert.-Octyl-5-meth ylhydroquinone	6.2	6.2			7.1	6.6
2,5-Diisopropylhydroquinone	4.1	-	5.1	-	4.1	3.9
2,5-Di-tevt.-butylhydroquinone	6.3	-	-	-	7.8	$7 \cdot 7$
2-Methoxy-4-tert.-butylphenol		-	-	-	9.3	8.9
2-tert.-Butyl-4-methoxyphenol	-	-	-		9.1	9.2
4,4'-Isopropylidene-bisphenol	2.3	2.3	2.0	1.7	.	
2-Methyl-4,4'-isopropylidene-bisphenol	3.9	3.8	3.0	3.1	-	
2,6-Dimethyl-4,4 ${ }^{\prime \prime}$-isopropylidene-bisphenol	6.1		3.9	4.0	-	
4,4'-Isopropylidene-bis(2-methylphenol)	$5 \cdot 4$	$5 \cdot 3$	4.5		-	
6-Methyl-4,4'-isopropyliclene-bis(2-methylphenol)		-	$5 \cdot 3$	5.4	4.0	4.0
4,4'-Isopropylidene-bis(2,6-climethylphenol)	-	-	6.2	6.3	$5 \cdot 3$	5.5
2-Ethyl-4,4'-isopropylidene-bisphenol	5.0	4.9	4.4	$4 \cdot 5$		
4.4'-Isopropylidene-bis(2-ethylphenol) 6-Ethyl-4,4'-isopropylidene-bis(2-ethyl-	$7 \cdot 5$	$7 \cdot 5$	6.7	$7 \cdot 3$	5.2	$5 \cdot 3$
phenol)		-	-	-	7.2	$7 \cdot 5$
4,4'-Isopropylidene-bis(2,6-diethylphenol)	-	-	-	-	10.2	9.7
2-Isopropyl-4,4'-isopropylidene-bisphenol	5.6	5.7	5.8	5.7	4.0	3.6
$4,4^{\prime}$-Isopropylidenc-bis(2-isopropylphenol) 6-Isopropyl-4,4'-isopropylidene-bis(2-isopropylphenol)	-	-	-	-	7.1 10.5	7.5 10.5
2-tevt.-Butyl-4,4'-isopropylidene-bisphenol	6.8	-	7.0	$7 \cdot 5$	10.5 5.3	10.5 5.5
2,6-Di-tert.-butyl-4,4'-isopropylidenebisphenol	-	-	7.	$7 \cdot 5$	11.5	11.7
4,4'-Isopropylidene-bis(2-tert.-butylphenol)	-	-	-	-	10.5	11.3
2-tert.-Octyl-4,4'-isopropylidene-bisphenol	-	-	-	-	8.8	8.8
2-tert.-Dodecyl-4,4-isopropylidene-bisphenol	-	\cdots	-	-	I 1.7	I 1.8
2-Methyl-2'-tert.-butyl-4,4'-isopropylidenebisphenol	-	-	-	-	6.8	6.9
2,6-Dimethyl-2'-tert-.butyl-4,4'-isopropyl-idene-bisphenol	-	-	-	-	7.9	8.4
6-Methyl-2'-iert.-butyl-4,4'-isopropylidene-bis(2-methylphenol)	-	-	-	-	8.8	9.2
2-Methyl-6-tert.-octyl-4,4'-isopropylidencbisphenol	-	-	-	\cdots	9.8	-
2-Methyl-2'-tert.-octyl-4, 4'-isopropylidenebisphenol	-	-	-	-	10.4	10.2
4,4'-Methylene-bis (2,6 -xylenol)	-	-	$4 \cdot 7$	$4 \cdot 3$	3.7	-
4,4'-Methylene-bis(2 -methyl-6-tert.-butylphenol)	-	-	4	$4 \cdot 3$	I $\mathbf{1 . 1}$	II.I
3.3,3', 3^{\prime}-Tetrameth yl-1, I^{\prime}-spirobindane-6,6'-cliol 3.3.3', 3^{\prime}-'Tetramethyl-1, x^{\prime}-spirobiindane-6,6',7-triol	6.7	-	6.4	-	$5 \cdot 3$	-
	3.4	-	2.6	-	-	-

J. Chromatog., 52 (1970) 131-137

TABLE V

R_{C} values of the b-alkyl derivatives of pyrocatechol
Paper impregnated with 20% monomethylformamide, developed with a mixture of diisopropyl ether-heptane (1:2).

Compound	R_{C}
3-tert.-Butylpyrocatechol	
3-tert.-Butyl-5-methylpyrocatechol	7.2
3-tert.-Butyl-5-ethylpyrocatechol	8.1
3-tert.-Butyl-5-propylpyrocatechol	9.2
3.5-Di-tert.-butylpyrocatechol	ro.3
3-Methyl-5-tert.-butylpyrocatechol	II.0
3-Isopropylpyrocatechol	6.1

Table III for the calculations. These compounds have higher R_{C} values than the calculated ones. Another example of the finding that the chromatographic behaviour of phenolic derivatives can be influenced by some other structural feature is illustrated by the behaviour of 4-tert.-octylpyrocatechol and 4-tert.-octyl-5-methylpyrocatechol, whose R_{F} values are virtually identical.

It can be concluded, therefore, that in order to determine ΔR_{C} values which would characterise all the structural features of a substituted phenol molecule, it would be necessary to investigate a much larger set of compounds than we had at our disposal.

ACKNOWLEDGEMENTS

We wish to thank Mrs. M. KremličkovA for technical assistance in the experimental work, and J. Kahovec, Ph.D., for kindly supplying the samples of $4,4^{\prime}$-iso-propylidene-bisphenols.

REFERENCES

[^0]
[^0]: i S. Marcinkiewicz, J. Green and D. McHale, J. Chromatog., Io (ig63) 42.
 2 J. Green, S. Marciniciewicz and D. Mchale, J. Chromatog., io (ig63) 558.
 3 L. S. Barik and R. J. T. Graham, J. Chromatog., 23 (1966) 417.
 4 R. J. T. Graham, L. S. Barik and J. Daly, J. Chromatog., 33 (1968) ro7.
 5 J. Halmekoski and A. Nissema, Suomen Kiemistilehti, B 35 (1962) 188.
 6 J. Halmekoski and H. Hannikainen, Suomen Kemistilehti, B 36 (1963) 24.
 7 J. Franc and J. Joisl, J. Chromatog., 2 (1959) 423.
 8 J. Green and S. Marcinieiewicz, J. Chromatog., io (1963) 35.
 9 D. A. Williams, J. Chromatog., 26 (1967) 280.
 io J. Gasparič, Acta Chim. Acad. Sci. Hung., 27 (196i) 221.
 in J. W. Copius Peereboom, Rcc. Trav. Chim., 84 (r965) 659.
 I2 P. Deciner, Naturwissenschaften, 45 (1958) 464.
 13 R. D. Haworth and D. Woodcock, J. Chem. Soc., (1946) 999.

